ITSC 2025 Paper Abstract

Close

Paper FR-EA-T31.5

Atsuta, Kazuki (Nagoya University), Honda, Kohei (Nagoya University), Okuda, Hiroyuki (Nagoya University), Suzuki, Tatsuya (Nagoya University)

LVLM-MPC Collaboration for Autonomous Driving: A Safety-Aware and Task-Scalable Control Architecture

Scheduled for presentation during the Regular Session "S31b-AI-Driven Motion Prediction and Safe Control for Autonomous Systems" (FR-EA-T31), Friday, November 21, 2025, 14:50−14:50, Southport 1

2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC), November 18-21, 2025, Gold Coast, Australia

This information is tentative and subject to change. Compiled on October 18, 2025

Keywords Real-time Motion Planning and Control for Autonomous Vehicles in ITS Networks

Abstract

This paper proposes a novel Large Vision-Language Model (LVLM) and Model Predictive Control (MPC) integration framework that delivers both task scalability and safety for Autonomous Driving (AD). LVLMs excel at high-level task planning across diverse driving scenarios. However, since these foundation models are not specifically designed for driving and their reasoning is not consistent with the feasibility of low-level motion planning, concerns remain regarding safety and smooth task switching. This paper integrates LVLMs with MPC Builder, which automatically generates MPCs on demand, based on symbolic task commands generated by the LVLM, while ensuring optimality and safety. The generated MPCs can strongly assist the execution or rejection of LVLM-driven task switching by providing feedback on the feasibility of the given tasks and generating task-switching-aware MPCs. Our approach provides a safe, flexible, and adaptable control framework, bridging the gap between cutting-edge foundation models and reliable vehicle operation. We demonstrate the effectiveness of our approach through a simulation experiment, showing that our system can safely and effectively handle highway driving while maintaining the flexibility and adaptability of LVLMs.

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2025 PaperCept, Inc.
Page generated 2025-10-18  21:18:25 PST  Terms of use