ITSC 2025 Paper Abstract

Close

Paper TH-LA-T22.2

Abboush, Mohammad (TU Clausthal), Hatahet, Ahmad (TU Clausthal), Rausch, Andreas (TU Clausthal)

LLMs-Powered Real-Time Fault Injection: An Approach Toward Intelligent Fault Test Cases Generation

Scheduled for presentation during the Invited Session "S22c-Emerging Trends in AV Research" (TH-LA-T22), Thursday, November 20, 2025, 16:20−16:40, Coolangata 1

2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC), November 18-21, 2025, Gold Coast, Australia

This information is tentative and subject to change. Compiled on October 18, 2025

Keywords Methods for Verifying Safety and Security of Autonomous Traffic Systems

Abstract

A well-known testing method for the safety evaluation and real-time validation of automotive software systems (ASSs) is Fault Injection (FI). In accordance with the ISO 26262 standard, the faults are introduced artificially for the purpose of analyzing the safety properties and verifying the safety mechanisms during the development phase. However, the current FI method and tools have a significant limitation in that they require manual identification of FI attributes, including fault type, location and time. The more complex the system, the more expensive, time-consuming and labour-intensive the process. To address the aforementioned challenge, a novel Large Language Models (LLMs)-assisted fault test cases (TCs) generation approach for utilization during real-time FI tests is proposed in this paper. To this end, considering the representativeness and coverage criteria, the applicability of various LLMs to create fault TCs from the functional safety requirements (FSRs) has been investigated. Through the validation results of LLMs, the superiority of the proposed approach utilizing gpt-4o in comparison to other state-of-the-art models has been demonstrated. Specifically, the proposed approach exhibits high performance in terms of FSRs classification and fault TCs generation with F1-score of 88% and 97.5%, respectively. To illustrate the proposed approach, the generated fault TCs were executed in real time on a hardware-in-the-loop system, where a high-fidelity automotive system model served as a case study. This novel approach offers a means of optimizing the real-time testing process, thereby reducing costs while simultaneously enhancing the safety properties of complex safety-critical ASSs.

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2025 PaperCept, Inc.
Page generated 2025-10-18  21:28:22 PST  Terms of use