ITSC 2024 Paper Abstract

Close

Paper WeAT16.3

Adewale, Ayobami Ephraim (University of Windsor), Lee, Chris (University of Windsor), HADACHI, AMNIR (University of Tartu), Lima da Silva, Nicolly (University of Windsor)

Knowledge Distillation Neural Network for Predicting Car-Following Behaviour of Human-Driven and Autonomous Vehicles

Scheduled for presentation during the Poster Session "Travel Behavior Under ITS" (WeAT16), Wednesday, September 25, 2024, 10:30−12:30, Foyer

2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), September 24- 27, 2024, Edmonton, Canada

This information is tentative and subject to change. Compiled on January 13, 2025

Keywords Travel Behavior Under ITS, Data Mining and Data Analysis

Abstract

As we move towards a mixed-traffic scenario of Autonomous vehicles (AVs) and Human-driven vehicles (HDVs), understanding the car-following behaviour is important to improve traffic efficiency and road safety. Using a real-world trajectory dataset, this study uses descriptive and statistical analysis to investigate the car-following behaviours of three vehicle pairs: HDV-AV, AV-HDV and HDV-HDV in mixed traffic. The ANOVA test showed that car-following behaviours across different vehicle pairs are statistically significant (p-value $<$ 0.05).

We also introduce a data-driven Knowledge Distillation Neural Network (KDNN) model for predicting car-following behaviour in terms of speed. The KDNN model demonstrates comparable predictive accuracy to its teacher network, a Long Short-Term Memory (LSTM) network, and outperforms both the standalone student network, a Multilayer Perceptron (MLP), and traditional physics-based models like the Gipps model. Notably, the KDNN model better prevents collisions, measured by minimum Time-to-Collision (TTC), and operates with lower computational power, making it ideal for AVs or driving simulators requiring efficient computing.

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2025 PaperCept, Inc.
Page generated 2025-01-13  16:29:04 PST  Terms of use