Paper WeAT13.5
Wang, Bingzhang (University of Washington), Cai, Zhiyu (Joey) (University of California, Berkeley), Karim, Muhammad Monjurul (University of Washington), Liu, Chenxi (University of Washington), Wang, Yinhai (University of Washington)
Traffic Performance GPT (TP-GPT): Real-Time Data Informed Intelligent ChatBot for Transportation Surveillance and Management
Scheduled for presentation during the Poster Session "Large Language Models" (WeAT13), Wednesday, September 25, 2024,
10:30−12:30, Foyer
2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), September 24- 27, 2024, Edmonton, Canada
This information is tentative and subject to change. Compiled on December 26, 2024
|
|
Keywords Other Theories, Applications, and Technologies, Data Mining and Data Analysis, Travel Information, Travel Guidance, and Travel Demand Management
Abstract
The digitization of traffic sensing infrastructure has significantly accumulated an extensive traffic data warehouse, which presents unprecedented challenges for transportation analytics. The complexities associated with querying large-scale multi-table databases require specialized programming expertise and labor-intensive development. Additionally, traditional analysis methods have focused mainly on numerical data, often neglecting the semantic aspects that could enhance interpretability and understanding. Furthermore, real-time traffic data access is typically limited due to privacy concerns. To bridge this gap, the integration of Large Language Models (LLMs) into the domain of traffic management presents a transformative approach to addressing the complexities and challenges inherent in modern transportation systems. This paper proposes an intelligent online chatbot, TP-GPT, for efficient customized transportation surveillance and management empowered by a large real-time traffic database. The innovative framework leverages contextual and generative intelligence of language models to generate accurate SQL queries and natural language interpretations by employing transportation-specialized prompts, Chain-of-Thought prompting, few-shot learning, multi-agent collaboration strategy, and chat memory. Experimental study demonstrates that our approach outperforms state-of-the-art baselines such as GPT-4 and PaLM 2 on a challenging traffic-analysis benchmark TransQuery. TP-GPT would aid researchers and practitioners in real-time transportation surveillance and management in a privacy-preserving, equitable, and customizable manner.
|
|