ITSC 2024 Paper Abstract

Close

Paper ThBT9.3

Gariboldi, Cristian (Politecnico di Milano), Corno, Matteo (Politecnico di Milano), Jin, Beng (GuiZhou HanKaiSi Intelligent Technology Co., Ltd.)

Hybrid Imitation-Learning Motion Planner for Urban Driving

Scheduled for presentation during the Regular Session "Motion planning" (ThBT9), Thursday, September 26, 2024, 15:10−15:30, Salon 17

2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), September 24- 27, 2024, Edmonton, Canada

This information is tentative and subject to change. Compiled on October 14, 2024

Keywords Automated Vehicle Operation, Motion Planning, Navigation, Advanced Vehicle Safety Systems, Simulation and Modeling

Abstract

With the release of open source datasets such as nuPlan and Argoverse, the research around learning-based planners has spread a lot in the last years. Existing systems have shown excellent capabilities in imitating the human driver behaviour, but they struggle to guarantee safe closed-loop driving. Conversely, optimization-based planners offer greater security in short-term planning scenarios. To confront this challenge, in this paper we propose a novel hybrid motion planner that integrates both learning-based and optimization-based techniques. Initially, a multilayer perceptron (MLP) generates a human-like trajectory, which is then refined by an optimization-based component. This component not only minimizes tracking errors but also computes a trajectory that is both kinematically feasible and collision-free with obstacles and road boundaries. Our model effectively balances safety and human-likeness, mitigating the trade-off inherent in these objectives. We validate our approach through simulation experiments and further demonstrate its efficacy by deploying it in real-world self-driving vehicles.

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-10-14  02:42:38 PST  Terms of use