ITSC 2024 Paper Abstract

Close

Paper WeBT16.11

Farhani, Ghazal (National Research Council Canada), Rahman, Taufiq (National Research Council), Ali, Syed Mostaquim (Western University, National Research Council Canada), Liu, Andrew (National Research Council Canada), zaki, mohamed (university of western ontario), Charlebois, Dominique (Transport Canada), Anctil, Benoit (Transport Canada)

3D Roadway Scene Object Detection with LiDARs in Snowfall Conditions

Scheduled for presentation during the Poster Session "Perception - Road and weather conditions" (WeBT16), Wednesday, September 25, 2024, 14:30−16:30, Foyer

2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), September 24- 27, 2024, Edmonton, Canada

This information is tentative and subject to change. Compiled on December 26, 2024

Keywords Driver Assistance Systems, Modeling, Simulation, and Control of Pedestrians and Cyclists

Abstract

Because 3D structure of a roadway environment can be characterized directly by a Light Detection and Ranging (LiDAR) sensors, they can be used to obtain exceptional situational awareness for assitive and autonomous driving systems. Although LiDARs demonstrate good performance in clean and clear weather conditions, their performance significantly deteriorates in adverse weather conditions such as those involving atmospheric precipitation. This may render perception capabilities of autonomous systems that use LiDAR data in learning based models to perform object detection and ranging ineffective. While efforts have been made to enhance the accuracy of these models, the extent of signal degradation under various weather conditions remains largely not quantified. In this study, we focus on the performance of an automotive grade LiDAR in snowy conditions in order to develop a physics-based model that examines failure modes of a LiDAR sensor. Specifically, we investigated how the LiDAR signal attenuates with different snowfall rates and how snow particles near the source serve as small but efficient reflectors. Utilizing our model, we transform data from clear conditions to simulate snowy scenarios, enabling a comparison of our synthetic data with actual snowy conditions. Furthermore, we employ this synthetic data, representative of different snowfall rates, to explore the impact on a pre-trained object detection model, assessing its performance under varying levels of snowfall.

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-12-26  13:44:07 PST  Terms of use