ITSC 2024 Paper Abstract

Close

Paper WeAT1.2

Guo, Song (Xi’an Jiaotong University), Wang, Shen'ao (Xi'an Jiaotong University), He, Junjie (Xi'an Jiaotong University), Chen, Liming (Xi'an Jiaotong University), Wang, Hang (Xi’an Jiaotong University), Sun, Hongbin (Xi’an Jiaotong University)

Mars Planner: Improved Batch Spatio-Temporal Path Planning for Multi-Ackerman Robotic Systems

Scheduled for presentation during the Invited Session "Learning-empowered Intelligent Transportation Systems: Foundation Vehicles and Coordination Technique I" (WeAT1), Wednesday, September 25, 2024, 10:50−11:10, Salon 1

2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), September 24- 27, 2024, Edmonton, Canada

This information is tentative and subject to change. Compiled on December 26, 2024

Keywords Automated Vehicle Operation, Motion Planning, Navigation, Multi-autonomous Vehicle Studies, Models, Techniques and Simulations

Abstract

本文介绍了一种创新的多智能体路径 专为导航而设计的查找 (MAPF) 系统 复杂环境中的多阿克曼机器人系统。Mars Planner,拟议的解决方案,增强了路径 通过应对无碰撞路径挑战进行规划 智能代理组遇到的。我们 贡献包括开发两个关键 算法:快速批处理路径查找 (FBPF) 和 批量时空路径细化 (BSTPR)。FBPF公司 利用混合 A* 方法生成初步 自由配置空间内的粗略路径,而 BSTPR 使用拓扑同伦策略细化这些路径 优化时间分配,有效解决 内部冲突。通过模拟和物理 实验中,我们展示了以下方面的显着增强 计算效率和路径质量与 现有方法。总之,火星规划器代表 能够管理大规模的高效解决方案 实际应用的复杂性。它提供了一个强大的 以及适用于不同环境的可扩展

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-12-26  13:24:55 PST  Terms of use