ITSC 2024 Paper Abstract

Close

Paper WeBT16.2

Ojala, Risto (Aalto University), Alamikkotervo, Eerik (Aalto University)

Road Surface Friction Estimation for Winter Conditions Utilising General Visual Features

Scheduled for presentation during the Poster Session "Perception - Road and weather conditions" (WeBT16), Wednesday, September 25, 2024, 14:30−16:30, Foyer

2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), September 24- 27, 2024, Edmonton, Canada

This information is tentative and subject to change. Compiled on December 26, 2024

Keywords Sensing, Vision, and Perception, Sensing and Intervening, Detectors and Actuators, Roadside and On-board Safety Monitoring

Abstract

In below freezing winter conditions, road surface friction can greatly vary based on the mixture of snow, ice, and water on the road. Friction between the road and vehicle tyres is a critical parameter defining vehicle dynamics, and therefore road surface friction information is essential to acquire for several intelligent transportation applications, such as safe control of automated vehicles or alerting drivers of slippery road conditions. This paper explores computer vision-based evaluation of road surface friction from roadside cameras. Previous studies have extensively investigated the application of convolutional neural networks for the task of evaluating the road surface condition from images. Here, we propose a hybrid deep learning architecture, WCamNet, consisting of a pretrained visual transformer model and convolutional blocks. The motivation of the architecture is to combine general visual features provided by the transformer model, as well as fine-tuned feature extraction properties of the convolutional blocks. To benchmark the approach, an extensive dataset was gathered from national Finnish road infrastructure network of roadside cameras and optical road surface friction sensors. Acquired results highlight that the proposed WCamNet outperforms previous approaches in the task of predicting the road surface friction from the roadside camera images.

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-12-26  12:51:26 PST  Terms of use