ITSC 2024 Paper Abstract

Close

Paper ThAT14.5

Xiangbo, Gao (University of Michigan, Ann Arbor), Kanu-Asiegbu, Asiegbu Miracle (University of Michigan), Du, Xiaoxiao (University of Michigan)

MambaST: A Plug-And-Play Cross-Spectral Spatial-Temporal Fuser for Efficient Pedestrian Detection

Scheduled for presentation during the Poster Session "Modeling, Simulation, and Control of Pedestrians and Cyclists II" (ThAT14), Thursday, September 26, 2024, 10:30−12:30, Foyer

2024 IEEE 27th International Conference on Intelligent Transportation Systems (ITSC), September 24- 27, 2024, Edmonton, Canada

This information is tentative and subject to change. Compiled on October 8, 2024

Keywords Sensing, Vision, and Perception, Multi-modal ITS

Abstract

This paper proposes MambaST, a plug-and-play cross-spectral spatial-temporal fusion pipeline for efficient pedestrian detection. Several challenges exist for pedestrian detection in autonomous driving applications. First, it is difficult to perform accurate detection using RGB cameras under dark or low-light conditions. Cross-spectral systems must be developed to integrate complementary information from multiple sensor modalities, such as thermal and visible cameras, to improve the robustness of the detections. Second, pedestrian detection models are latency-sensitive. Efficient and easy-to-scale detection models with fewer parameters are highly desirable for real-time applications such as autonomous driving. Third, pedestrian video data provides spatial-temporal correlations of pedestrian movement. It is beneficial to incorporate temporal as well as spatial information to enhance pedestrian detection. This work leverages recent advances in the state space model (Mamba) and proposes a novel Multi-head Hierarchical Patching and Aggregation (MHHPA) structure to extract both fine-grained and coarse-grained information from both RGB and thermal imagery. Experimental results show that the proposed MHHPA is an effective and efficient alternative to a Transformer model for cross-spectral pedestrian detection. Our proposed model also achieves superior performance on small-scale pedestrian detection.

 

 

All Content © PaperCept, Inc.


This site is protected by copyright and trademark laws under US and International law.
All rights reserved. © 2002-2024 PaperCept, Inc.
Page generated 2024-10-08  14:37:30 PST  Terms of use